Author: Olaf Kopp
Only for SEO Research Suite member Reading time: 13 Minutes

Predicting Latent Structured Intents from Shopping Queries

Topics: , , ,

5/5 - (1 vote)

The paper titled “Predicting Latent Structured Intents from Shopping Queries” presents a novel framework designed to infer and map user intents from unstructured shopping queries to structured attributes using a hybrid model. This model combines Long Short-Term Memory (LSTM) networks with autoencoders to jointly learn from user behaviors and product metadata. The approach aims to improve the quality of search results on Google Shopping by understanding and predicting user intents accurately.

The paper reminds me of my approaches I introduce in the article about Shopping Graph Optimization at Search Engine Land. Here some citations from this article:

“Large language models (LLMs) learn based on the frequency of co-occurrences that occur or, in the context of ecommerce, from co-mentions of attributes with the respective product.”

“The frequency of the attributes requested in prompts and search queries determines which attributes are important for a product entity.”

“When optimizing for the shopping graph, you should mention the relevant attributes in the data sources mentioned above, if possible.”

“The more the attributes associated with the respective product resemble the context specified in the prompt and the attributes derived from the LLM, the more likely the products will be mentioned in a response from the generative AI.”

  • Identify and understand user and product-relevant attributes: Long-tail analysis of search queries and prompts is becoming increasingly important.
  • Think beyond keywords: SEOs must think in terms of concepts, entities, attributes and relationships. The time of keywords as a central focus is coming to an end.

... You would like to read more about this exciting topic? You can read the full article as a member of the SEO Resesarch Suite. Complete access to full exclusive blog articles, analysis of the patents, research paper, other SEO related documents and use of AI research tools are only for SEO Thought Leader (yearly), SEO Thought Leader (monthly), and SEO Thought Leader basic (yearly) members.

Your advantages:

+ Get access to the full exclusive paid articles in the blog.
+ Full analysis of hundreds of well researched active Microsoft and Google patents and research paper.
+ Save a lot of time and get insights in just a few minutes, without having to spend hours analyzing the documents.
+ Get quick exclusive insights about how search engines and Google could work  with easy to understand summaries and analysis.
+ All patents classified by topic for targeted research.
+ New patent summaries and analysis every week. Weekly notification via E-Mail
+ Use all 5 AI Research Tools to gain insights in seoncds from all documents in the taining databases, the Google Leak Analyzer, Patent & Paper Analyzer, Semantic SEO Research Agent, LLMO / GEO Assistant
+ Gain fundamental insights for your SEO work and become a real thought leader.

Get access to the SEO Research Suite and become a SEO thought leader now!
Already a member? Log in here

COMMENT ARTICLE



Content from the blog

LLMO / GEO: How to optimize content for LLMs and generative AI like AIOverviews, ChatGPT, Perplexity …?

In the rapidly evolving digital landscape in the AI era, a silent revolution has fundamentally read more

LLMO / Generative Engine Optimization: How do you optimize for the answers of generative AI systems?

As more and more people prefer to ask ChatGPT rather than Google when searching for read more

Digital brand building: The interplay of (online) branding & customer experience

Digital brand building or branding is one of the central topics in online marketing. Read read more

E-E-A-T: Discovery and evaluation of high quality ressources

The assessment of the Quality and authority of websites is crucial for search engines and read more

E-E-A-T: More than an introduction to Experience ,Expertise, Authority, Trust

There are many definitions and explanations of E-E-A-T, but few are truly tangible. This article read more

Learning to Rank (LTR): A comprehensive introduction

In the age of the internet and vast amounts of data, the ability to find read more